Choosing a model to predict hospital admission: an observational study of new variants of predictive models for case finding

نویسندگان

  • John Billings
  • Theo Georghiou
  • Ian Blunt
  • Martin Bardsley
چکیده

OBJECTIVES To test the performance of new variants of models to identify people at risk of an emergency hospital admission. We compared (1) the impact of using alternative data sources (hospital inpatient, A&E, outpatient and general practitioner (GP) electronic medical records) (2) the effects of local calibration on the performance of the models and (3) the choice of population denominators. DESIGN Multivariate logistic regressions using person-level data adding each data set sequentially to test value of additional variables and denominators. SETTING 5 Primary Care Trusts within England. PARTICIPANTS 1 836 099 people aged 18-95 registered with GPs on 31 July 2009. MAIN OUTCOME MEASURES Models to predict hospital admission and readmission were compared in terms of the positive predictive value and sensitivity for various risk strata and with the receiver operating curve C statistic. RESULTS The addition of each data set showed moderate improvement in the number of patients identified with little or no loss of positive predictive value. However, even with inclusion of GP electronic medical record information, the algorithms identified only a small number of patients with no emergency hospital admissions in the previous 2 years. The model pooled across all sites performed almost as well as the models calibrated to local data from just one site. Using population denominators from GP registers led to better case finding. CONCLUSIONS These models provide a basis for wider application in the National Health Service. Each of the models examined produces reasonably robust performance and offers some predictive value. The addition of more complex data adds some value, but we were unable to conclude that pooled models performed less well than those in individual sites. Choices about model should be linked to the intervention design. Characteristics of patients identified by the algorithms provide useful information in the design/costing of intervention strategies to improve care coordination/outcomes for these patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Three Decision-Making Models in Differentiating Five Types of Heart Disease: A Case Study in Ghaem Sub-Specialty Hospital

Introduction: cardiovascular diseases are becoming the main cause of mortality and morbidity in most countries. This research goal was to predict the types of heart diseases for more accurate diagnosis by data mining and neural network technics. Method: This research was an applied-survey study and after data preprocessing, three approaches of neural network, decision making tree and Bayes simp...

متن کامل

Comparison of Three Decision-Making Models in Differentiating Five Types of Heart Disease: A Case Study in Ghaem Sub-Specialty Hospital

Introduction: cardiovascular diseases are becoming the main cause of mortality and morbidity in most countries. This research goal was to predict the types of heart diseases for more accurate diagnosis by data mining and neural network technics. Method: This research was an applied-survey study and after data preprocessing, three approaches of neural network, decision making tree and Bayes simp...

متن کامل

Predicting Bankruptcy of Companies using Data Mining Models and Comparing the Results with Z Altman Model

One of the issues helping make investment decisions is appropriate tools and models to evaluate financial situation 0f the organization.  By means of these tools, investors can analyze financial situation of the organization and identify financial distress or an ideal condition, they become aware of making decisions to invest in appropriate conditions.  The main objective of this study is to ev...

متن کامل

Logic regression and its application in predicting diseases

Regression is one of the most important statistical tools in data analysis and study of the relationship between predictive variables and the response variable. in most issues, regression models and decision tress only can show the main effects of predictor variables on the response and considering interactions between variables does not exceed of two way and ultimately three-way, due to co...

متن کامل

Improved Rheological Model of Oil-Based Drilling Fluid for South-western Iranian Oilfields

In this study, predictive capabilities of apparent viscosity of oil-based drilling fluids which is used in National Iranian South Oilfields Company (NISOC) were evaluated using Newtonian and non-Newtonian models to drive a new suitable equation. The non-Newtonian models include Bingham plastic, Power law, Herschel-Bulkley, Casson, and Robertson-Stiff. To validate the results, the calculated vis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013